Mammalian end binding proteins control persistent microtubule growth
نویسندگان
چکیده
End binding proteins (EBs) are highly conserved core components of microtubule plus-end tracking protein networks. Here we investigated the roles of the three mammalian EBs in controlling microtubule dynamics and analyzed the domains involved. Protein depletion and rescue experiments showed that EB1 and EB3, but not EB2, promote persistent microtubule growth by suppressing catastrophes. Furthermore, we demonstrated in vitro and in cells that the EB plus-end tracking behavior depends on the calponin homology domain but does not require dimer formation. In contrast, dimerization is necessary for the EB anti-catastrophe activity in cells; this explains why the EB1 dimerization domain, which disrupts native EB dimers, exhibits a dominant-negative effect. When microtubule dynamics is reconstituted with purified tubulin, EBs promote rather than inhibit catastrophes, suggesting that in cells EBs prevent catastrophes by counteracting other microtubule regulators. This probably occurs through their action on microtubule ends, because catastrophe suppression does not require the EB domains needed for binding to known EB partners.
منابع مشابه
Microtubule plus-end tracking proteins SLAIN1/2 and ch-TOG promote axonal development.
Development, polarization, structural integrity, and plasticity of neuronal cells critically depend on the microtubule network and its dynamic properties. SLAIN1 and SLAIN2 are microtubule plus-end tracking proteins that have been recently identified as regulators of microtubule dynamics. SLAINs are targeted to microtubule tips through an interaction with the core components of microtubule plus...
متن کاملMicrotubule plus-ends within a mitotic cell are ‘moving platforms’ with anchoring, signalling and force-coupling roles
The microtubule polymer grows and shrinks predominantly from one of its ends called the 'plus-end'. Plus-end regulation during interphase is well understood. However, mitotic regulation of plus-ends is only beginning to be understood in mammalian cells. During mitosis, the plus-ends are tethered to specialized microtubule capture sites. At these sites, plus-end-binding proteins are loaded and u...
متن کاملPlus-End-Tracking Proteins and Their Interactions at Microtubule Ends
Microtubules are cytoskeletal elements that are essential for a large number of intracellular processes, including mitosis, cell differentiation and migration, and vesicle transport. In many cells, the microtubule network is organized in a radial manner, with one end of a microtubule (the minus end) embedded near the nucleus and the other end (the plus end) exploring cytoplasmic space, switchin...
متن کاملA Proteome-wide Screen for Mammalian SxIP Motif-Containing Microtubule Plus-End Tracking Proteins
Microtubule plus-end tracking proteins (+TIPs) are structurally and functionally diverse factors that accumulate at the growing microtubule plus-ends, connect them to various cellular structures, and control microtubule dynamics [1, 2]. EB1 and its homologs are +TIPs that can autonomously recognize growing microtubule ends and recruit to them a variety of other proteins. Numerous +TIPs bind to ...
متن کاملAn assay to image neuronal microtubule dynamics in mice
Microtubule dynamics in neurons play critical roles in physiology, injury and disease and determine microtubule orientation, the cell biological correlate of neurite polarization. Several microtubule binding proteins, including end-binding protein 3 (EB3), specifically bind to the growing plus tip of microtubules. In the past, fluorescently tagged end-binding proteins have revealed microtubule ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 184 شماره
صفحات -
تاریخ انتشار 2009